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A TENSION SHELL STRUCTURE FOR APPLICATION
TO ENTRY VEHICLES

By Melvin S. Anderson, James C. Robinson,
Harold G. Bush, and Robert W. Fralich
Langley Research Center

SUMMARY

The shape of a shell of revolution designed to have only tensile stresses
under axisymmetric aerodynamic loadings has been derived on the basis of linear
membrane theory. The drag coefficilent for various proportions and various
values of circumferential tension is also given. The results of this paper
indicate that the design of an entry vehicle based on the tension shell concept
leads to desirable aerodynamic and structural characteristics, namely, high
drag and low welght.

INTRODUCTION

The discussion of entry into thin planetary atmospheres presented in ref-
erences 1 and 2 indicates that for such an enviromment, a very low value of the
ballistic coefficient would be necessary to obtain reasonable dwell times in
the atmosphere or to obtain low enough speeds for parachute deployment. As the
ballistic coefficient decreases, the structural weight fraction increases, and
for thin atmospheres such as that of Mars the structural weight can become so
large that conventional structural concepts lead to a vehicle with little pay-
load capability. This behavior is due in part to the fact that the structural
design of most ailrcraft and entry vehicles is controlled by loading conditions
that cause buckling to be a primary design factor. Thus, stresses are lower
than the material strength capability. In order to take better advantage of
the strength of the material, a structural concept has been developed which
resists the primary structural loadings by tensile stresses over a major por-
tion of the vehicle surface and thus permits a more efficient structural design.
This concept, shown in figure 1(a), was introduced in reference 1 as a possible
solution to the problem of entry into thin planetary atmospheres. The payload
is assumed to be concentrated in the forward portion of the vehicle and sup-
ported by a shell that is shaped to resist the aerodynamic loadings by tensile
stresses. The tension in the shell is resisted by a compresslon ring at the
base of the vehicle. The purpose of this paper is to describe the mathematical
development of the tension shell concept and to discuss some of its
characteristics.



SYMBOLS

8),80,8,8 constants of integration

X
A2 shape parameter associated with Newtonian pressure, 9™
o
2 : X Po™p
B shape parameter assoclated with uniform pressure,
o
ce shape parameter in equation (34) defining proportion of catenary
curve
D
Cp drag coefficient,
q_:r'[I"b2
D drag force
2 M 2
erf(A) = = L/“ e™* dx error function
Vi
€
E(e,d) = J/\ V1 - 5%sin2x dx elliptic integral of second kind
0
F(e,d) = U/\ - elliptic integral of first kind
0O V1- 8231n2x
G =

oB2
1+ L+ 4Bt

In(A),Kn(A) modified Bessel functions of order n

k integer

K constant used in Newtonian pressure distribution

n order of Bessel function

Ne,N¢ circumferential and meridional stress resultants, respectively,
positive in tension

No N@ evaluated at r = 1y

D pressuce acting on shell, positive outward



Do magnitude of uniform external pressure

q dynamic pressure of alrstream

r radial coordinate

Tg,Tp radius of tension shell at forward end and at base, respectively
ri1,rp principal radii of curvature of shell in meridional and circum-

ferential directions, respectively

u new dependent variable in differential equation (see eq. (11))
Z longitudinal coordinate of shell
N
@ = -8
No
B = \1 - G4

2
co
I'(n) = JF e=Xxn-lgx gamma, function
0
6_\}1+BE
- 2
2
€ = cos‘lp B
1+ B°
2
€y = cos‘l B =
1l + 3B

Ny = sin”™ __EL__
1+ 62

o circumferential coordinate



2A
\ = p
2 - a
2
2A
A o=
1 2 -a
p = ﬁ% nondimensional radial coordinate
Pos value of p for which tan ¢ 1s infinite
Ta
p = e
a r.b
P meridional coordinate
A o
qr(A)=f eX"dx
0

MATHEMATICAL DEVELOPMENT OF THE SHAPE

OF THE TENSION SHELL: STRUCTURE

In the mathematical development of the shape of the tengion shell struc-
ture presented herein, an axisymmetric vehicle is considered to be entering a
low-density atmosphere. It is improbable that the structural shell of such a
vehicle can be designed so that tensile stresses exist for all loading condi-
tions. However, a design can be made such that at zero angle of attack suffi-
cient temsion can be provided to allow for deviations from this condition. The
mathematlcal development of this configuration is based on the following
assumptions: (1) The structure is a shell of revolution subject to an axisym-
metric pressure distribution. (See fig. 1 for configuration and coordinate
system.) (2) The pressure loading is assumed to produce a pure membrane state
of stress based on linear membrane theory with Ne/N¢ some constant ratio.

(3) The aft end of the shell terminates with a compression ring. (See

fig. 1(a).) Although the design of the ring is not considered in this analysis,
the concentration of the compression material in a single member would be
expected to lead to an efficient design. (4) The dimensions of the shell are
large compared with the dimensions of the payload, which is assumed to be con-
centrated at the small forward end and supported by a ring. This assumption
is reasonable for lightly loaded vehicles entering low-density atmospheres.

The analysis proceeds from the appropriate membrane equilibrium equations
for a shell of revolution subject to axisymmetric loadings. These equations
are (see ref. 3)
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rranl rqNg cos ¢ = O (1)
N
. (2)
i T2
where
L - dp _dsing
r cos ¥ ar dr (3)
1 _sing (%)
rs Tr

It is assumed that there is no force in the z-direction on the compression
ring at r = rp. Therefore, the curve of the meridian must have a horizontal

tangent at r = rp; thus,

42 - ~tan @ = O (5)
dr

If Ng = aN@ where o 1s a constant, equation (1) becomes

dNp 1 - «
—T 4 Ny = O 6
dr T P ( )
The solution for N@ is

r(l'“)NCP = Constant = Norb(l'a) (7)

It should be noted that this solution is independent of the pressure distribu-
tion and that for the case o =1, Np 1s constant throughout the shell.

(From the definition of a, Ng also has the same constant value.) With the
use of equations (3), (4), and (7), equation (2) becomes

l-a
dsin @ |, ¢ P (r )
—_—+ =s5in ¢ - =(— =0 8
™ AR A (8)

This equation may be solved for sin ¢ for any pressure distribution; then,
tan @, which equals -dz/dr, is determined, and if this is integrated with
respect to r, the z-coordinates of the desired configuration are obtained as
a function of r. Solutions have been obtained for two pressure distributions,
that given by Newtonian impact theory and that resulting from a uniform pres-
sure distribution. These solutions are presented in the following sections.




Newtonian Pressure Distribution
The pressure given by Newtonian theory i1s taken in the form
p = -Kgq cos%p (9)

By substituting equation (9) into equation (8) and by using p = r/bb, the
differential equation for sin @ becomes

p
where
A2 = Kqry
2No

This nonlinear differential equation is a form of the Riccati equation and may
be solved by using the following substitution (see ref. k4):

sing=-_ 1 (11)
dp 2A2up(l-a)

Equation (10) then becomes

au - o
- aofed hatap(22%) g (12)
dp2 p p
The solution for u 1if L - does not equal an integer is
-a
l-a
a = plt-a) a In(A) + aez_n(x] (13)
where
l-a
= 1k
n=s— (14)
2 (2-a)
2Ap
A= — 1
- (15)

and Ip 1s the modified Bessel function of the first kind of order n. Sub-

stituting equation (13) into equation (11) (see ref. 5 for properties of Bessel
functions and their derivatives) gives

s - . G RN W —— — | 0 R ——T T




sin @ = - In-2(8) + aTy-n(h) (16)
In(A) + aI_n(K)

where

as

g = e

a3

From equation (14) 1t can be seen that as a varies from O to 1, n varies
from 1/2 to O and, therefore, equation (16) will generally involve the
fractional-order Bessel functions. The boundary condition, given as equa~
tion (5), implies that sin ¢ =0 at p = 1l. Therefore,

In—l(xl)

&=—En—(-_)€5 (17)

For the speclal case a =0, n = 1/2; therefore, the Bessel functions
appearing in equation (16) can be expressed in terms of hyperbolic functions as

(18)
I 1/2(K) = &Ei cosh A
- A
The expression for sin @ now becomes
sin @ = tanh Az(l - p2) (19)
In addition,
dz o) o)
= - -tan @ = -sinh A (l - p ) (20)

This equation can be integrated in terms of the error integral and related
functions, which are tabulated in reference 5. The expression for z for
a=0 1s

A2 -AZ
}Z; = EI— gErf(A) - erf(Ap)] - 2-2‘:—@(1‘-) - W(Ap):] (21)

Since in the general case negative fractional orders of the Bessel func-
tions are involved in equation (16), which are not usually found in mathemati-
cal tables, it may be necessary to use the function



%Kn(-)\) = -S-i_r}?:r—l}[—n(?\) - In(le

which has been tabulated for certain fractional values of n. The expression
for sin @ then becomes

K- l(K) - a'In_l(K) (l - a! % sin nﬁ)Kl_n(K) - a'I;_n(K)

- (22)
Kn(A) + a'In(A) K (A) + a'Tp(N)

sin ¢ =

where

K A
al = l-n( l) » o (23)

% sin o Ky_ () + Ip_n(Ar)

Equation (22) is also valid for integral values of n (o =1, for
example). In reference 5 the functions In and K, are tabulated for
=1/3 and n = 2/3, which are the functions required for a = 1/2.

Tabulations of In and Kp for other fractional values of n appear to

be rare and perhaps nonexlistent. Hence, in the general case it 1s necessary to
use the following series expansion for Ip(A) (see ref. 5):

2k

Ta(n) = (3 ) i (2) (24)

kT (n + k + 1)

Once sin @ is determined, the z-coordinate can be obtained by a simple numer-
ical integration of dz/dr = -tan o.

Since this configuration is considered for an entry vehicle, the drag coef-
ficlent is an important quantity to be determined. The drag acting on the sur-
face of the shell lying between r = r, and r = r, may be determined simply

by taking the z-component of N¢ at r = ry and integrating around the cir-
cumference. Thus,

D = (2nrN¢ sin @) (25)

r=rg

The drag coefficient related to the base area can be obtained for Newtonian
flow from equation (7) and equation (25) as

Cp = D _ (X p%in @ (26)
A2 1y

wry?




where For the special
case o = 0,

sin ¢ 1s obtained from equation (16) or equation (22).

Cp = i% tanh A?(l - pa2> (27)

Uniform Pressure Distribution

An insight into the influence of loading on the shape of the tension shell
can be obtained by locking at the results for a uniformly distributed pressure,
which is a significantly different loading from that applied by Newtonian flow.
This uniform pressure shape can be obtained from equation (8) by setting the
The solution for sin ¢ then becomes

sin @ = B2IE!‘—- - p(2'°°i} (28)

o&

pressure constant (p = -pg).

where

DT
Bg___ o b
2NO

and use has been made of the boundary condition (see eq. (5)) at r = -

For certain values of «, the z-coordinate can be expressed in terms of

elliptic integrals. For example, if a = 0
Z 1 -
= = = |F(e,8) - F(eq,d) - 2E(e,d) + 2F(eq,3) (29)
b VEB[; ]

for 32 <1 and

2-f0d)-Hd) o [0 Gty o

for B2 2 1, where

=
I

€ = COs



and F and E are elliptic integrals of the first and second kind, respec-
tively. For o =1

== G[F(n,B) - F(ny, 8] - =[E(n,B) - E(ny,B]] (31)

2 _ 2.2
G = 2B - n= sin‘l@
,’ -G
14+ Y1+ lLBL* 1
sin™H—1
1+62

For the general case, sin @ can be determined from equation (28) and =z
can be obtained numerically as in the case of Newtonian flow.

where

ho- ¢t ny

™
]

RESULTS AND DISCUSSION

Newtonian Flow Shape

Meridian curves have been calculated from the Newtonian flow analysis for
several values of the parameters A2 and NQ/NQ. The coordinates are given

in table 1 and a typlcal set of curves is shown in figure 2. Calculations were
made with a digital computer by using equation (16) for sin ¢ and the series
expansion for the Bessel function (eq. (24)). Four to six terms in the series
were usually found to be sufficient for the range of arguments considered.
Values of sin @ and dz/dr were calculated for values of T[Ty at intervals
of 0.01, and =z was determined by a simple numerical integration. For o = O,
the results of the numerical procedure were compared with those of the closed-
form solution (see eq. (21)) and the differences were less than 0.05 percent.

Figure 2(a) shows that for Ng/Np = 0, all curves intersect the r =0
axls; however, figure 2(b) shows that for Ne/N¢ > 0, the curves terminate at

some nonzero value of r with a vertical tangent (sin @ = 1), and some form
of closure would have to be provided. Even for Ng N¢ = 0, practical consider-
ations would probably dictate terminating the tension shell at some nonzero
value of r and using a compression structure such as a spherical cap for the
remainder of the vehicle.

Since the drag coefficient is a very important factor in the design of an
entry vehicle, it is of interest to calculate the drag coefficlent for some of
the more promising configurations. Accordingly, the drag coefficient is
plotted in figure 3 for representative values of A2 and NG/NQ' For these
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calculations, the constant K 1in the expression for Newtonian pressure was
taken as 2. For Ne/N¢ = 0 the bodies were considered to terminate at a point

so that Cp is given by (see eq. (27))

2 2
= 5= tanh 2
Cp = o5 terh A (32)

When NQ/N¢ > 0 the bodies were considered to have a hemispherical cap

attached at the point where the tangent to the meridian curve was infinite. If
this point is denoted as o, and since the drag coefficlent for a hemisphere

is 1, the drag coefficlent for the complete configuration is given by (see
eq. (26))

CD=—2—-pa'+p°°2 (33)

If any of these configurations were terminated at a larger radius with a seg-
ment of a spherical cap, a higher theoretical drag than that shown in figure 3
would result. Figure 3 shows that high drag coefficients can be obtained for
configurations with reasonable overall proportions. Thus, the concept of the
tension shell appears applicable to the design of an efficient entry vehicle.
However, it should be recognized that the complete shell would not be in ten-
sion, since a payload attachment ring is required near the forward end. This
ring could probably be located at r/rb = l/h or less so the area of compres-

sive structure compared with the total area would be quite small and would not
lead to a large weight penalty. The high drag coefficients indicate that this
concept might also be used to advantage for a deployable decelerator. Such a
concept was proposed in reference 6 where the equation for a uniform pressure
shape was given.

It should be noted that the shape is not a function of the magnitude of
the loading; that is, the same configuration would be applicable throughout the
range of dynamic pressures encountered in flight though, of course, the
stresses would vary with dynamic pressure. Also, the shape has been derived by
use of a rather simple aerodynamic theory; but use of more refined theories is
probably not warranted, since other loading conditions must be considered.
Deviations in flow conditions and angle of attack from that considered will
change the stress situation somewhat but probably not enough to alter the basic
concept of treating the shell as a tension structure.

Uniform Pressure Shape

As mentioned previously, the results for uniform pressure can be used to
obtain an indication of how sensitive the shape of the tension shell is to a
change in pressure distributions. Coordinates for the uniform pressure shape
are given in table 2 for several values of B2 and NS/N¢, and a typical set

of these shapes is shown in figure 4. The calculation procedure was similar to
that for the Newtonian flow shape except that sin ¢ was determined from

11



equation (28). For Ne/N¢ = 0 equations (29) and (30) could also be used to
check the accuracy of the numerical procedure. Figure 4 shows that if B2< 1
and NQ/Ncp = 0, the curves intersect the r = 0 axis. Otherwise, they have

been terminated at a nonzero value of r where sin @ = 1; this result is
similar to the result for the Newtonian pressure distribution with NQ/NQ > O.
A typical comparison of the uniform pressure shape with the Newtonian flow
shape for configurations with the same end points is shown in figure 5. The
geometric differences are not large, an indication that the shape is not sensi-
tive to the pressure distribution.

Catenary Shape

One disadvantage of the results obtained so far is that the coordinates
of the meridian curve cannot be given in terms of elementary functions. The
form of equation (20) suggests a somewhat simpler expression. If pe is
replaced by p, equation (20) becomes

%E = -sinh C2(1 - p) (34)

r

Integrating equation (34) gives

.I% - é}EEosh 21 - p) - 1] (35)

which is the equation of a catenary. A comparison of the catenary given by
equation (35) with the Newtonian flow shape is shown in figure 6 for NG/N¢ =0
and NQ/N¢ = 0.15. The curves do not differ greatly, especially the catenary
and the curve for Ne/N¢ = 0.15. The stresses resulting from a Newtonian pres-
sure distribution acting on these configurations are given in figure 7. Inas-
much as the catenary is very similar to the curve for Ne/NQ = 0.15, circum-
ferential tension stresses would be expected, which indeed is the case. The

circumferential stress resultant reaches a value % NQ at the base. These

stresses would be of benefit in stabilizing the shell for other loading con-
ditions. It should be noted that the circumferential stress Ng is very sen-

sitive to small changes in the shape in the vicinity of the base; this sensi-
tivity might require special consideration in the vehicle design.

The stress resultants for the Newtonian shape were obtained from equa-
tion (7) and the definition of A2 as

N,
L — (36)
ary, A2p (1-a)

12




or for Ne/Nq) =0

N
o A
Ty 2ty (37)

The stresses in the catenary are obtained by solving equations (1) and (2), and
the result is

N In cosh C2 1 -
2 -2, - e (38)
ar, ¢ pC2tanh C2(1 - p

Ng 1

P sinhecg(l - p) , sinh c¥(1 - p)cosh C(L - p)

1n cosh C2(1 - p) pC2

Although the catenary does not result in a constant value of NG/N¢, Ng and
N¢ are always tensile quantities, and thus, the catenary conforms to the ten-

sion shell concept. The simplicity of the expression for the meridian shape of
the catenary may be of advantage in subsequent aerodynamic or structural
analysis.

CONCLUDING REMARKS

An entry vehicle configuration has been developed that resists the aero-
dynamic loadings at zero angle of attack and has only tensile stresses over a
major portion of the vehicle surface. The configuration would be especially
suited for application to vehicles entering thin atmospheres where low values
of the ballistic coefficient are required. The use of a tension structure
eliminates buckling as a design criteria, which can result in a significant
increase in payload for these low values of ballistic coefficient. Calculated
drag coefficients for the more promising configurations are relatively high
(on the order of 1.5), which is desirable for a ballistic entry vehicle. A
configuration can be determined for any ratio of circumferential stress to
meridional stress, although practical limitations on overall dimensions may
limit this ratio to approximately 0.3. The coordinates of the derived shapes
cannot be expressed by elementary functions, but a catenary can be used to
closely approximate the shape for purposes of analysis.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., December 10, 1964.

13



1.

1k

REFERENCES

Anderson, Roger A.: Structures Technology - 1964, Astronaut. & Aeron.,
vol. 2, no. 12, Dec. 1964, pp. 14-20.

Roberts, Leonard: Entry Into Planetary Atmospheres. Astronaut. & Aeron.,
vol. 2, no. 10, Oct. 1964, pp. 22-29.

Fllgge, Wilhelm: Stresses in Shells. Second printing, Springer-Verlag
(Berlin), 1962, pp. 18-23.

Ince, E. L.: Ordinary Differential Equations. Dover Publ., Inc., 1956,
Pp. 23-25.

Jahnke; Emde; and L8sch: Tables of Higher Functions. Sixth ed., McGraw-
Hill Book Co., Inc., 1960.

Houtz, N, E.: Optimization of Inflatable Drag Devices by Isotensoid Design.
E?reprin@] No. 64-437, Am. Inst. Aeron. Astronaut., June 29-July 2, 196k.




.05
.10
.15
.20
.25
.30
.35
ko
A5
.50
55
.60
.65
.T0
-75
.80
.85
.90
<95
1.00

r/rb

.05
.10
.15
.20
.25
.30
.35
Lo
45
.50
.55

.65
.70

.80
.85
.90
.95
1.00

0.5

0.3430
.3169
.2910
L2654
.2ho2
.2156
L1917
.1686
L1hel
L1254
L1055
.0870
.0700
L0545
.ouo7

0187
L0107
.0048
.0012

0.5

0.4470
<3771
<3241
2795
L2405
.2056
L1743
L1460
<1205
.0976
L0772
-0592
0436
. 030k
.0196

-00ko
.0012

TABLE 1.- COORDINATES FOR NEWTONIAN FLOW SHAPE

z/rp for Ng/Np = 0

0.8 1.0
0.5734 |0.7k60
.5290 | .6873
JA8hk9 | L6290
L1k | 5715
.3986 | .5151
L3569 | 4601
Bl6h | LhoT1
L2775 | .3562
240k | L3077
L2052 | .2620
722 | L2193
L1416 | L1798
L1136 | .1hk38
L0882 | .111h4
L0658 | .0829
L0463 | L0583
.0301 | .0378
L0172 | .0215
0077 | .0097
L0020 | .0025
0 o}
z/rb for
0.8 1.0
0.6271
.5067 |0.8086
220 | L5927
L3534 [ 4781
L2950 | .3909
243 [ 3192
L1997 | 2584
L1606 | .2061
962 | L1610
L0963 | 1222
.0707 | .0893
L0401 | .0618
L0314 | 0395
LOLT7 | L0222
.0079 | .0099
.0020 | .0025
0 o}

0.6570
5107
4068
L3242
.2558
.1981
.1hgh
.1086
L0748
Nelikal
.0268
.0119
.0030

1.4

1.1597
1.0646
.9702
LB77h
. 7866
.6989
.6148
.5343
4586
.3878
L3223
.2625
.2085
1605
.1185

L0534
.0303
.0136
. 0034

= 0.3

1.k

0.6881
.5164
.Loo8
L3111
.2383
.1783
.1287
.0883
. 0560
.0313
.0139
.0035

1.6

1.4128
1.2942
1.1766
1.0610
.9485
.8398
-7358
L6372
5445
4587
-3796
.3078
L2434
.1866
-1373
.0956
. 0615
.0348
.0156
.0039

1.6

0.6761
4951
L3747
.2827
.2092
.1499
L1022
. 0645
. 0360
.0159
.0040

0.5

0.3642
.3278
2945
.2633
.2338
. 2060
-1797
.1549
L1317
.1102
. 0904
.0723
. 0560
LO417
.0293
.0190
.0108
.0049
.0012

0.5

0.4348
.3482
L2874
L2387
.1978
.1627
.1322
.1057
.0826
. 0627
. Ob5T7
.0316
.0201
L0113
.0050
.0012

z/r, for Ne/Nq; = 0.1

0.8 1.0 1.2 1.k 1.6
0.6422 |0.9216

5671 | .77#0 |1.1009

.50%6 | 6749 | .8993 | 1.34hk

A3 | 05913 | L7692 | 1.0141

.3935 | 5169 | .6625 | .8457 |1.110k4

hhs [ 4493 | L5698 | .71k0 | .898k

.2988 | .3874% | 4871 | .6026 | .Th1T

.2563 | .33%06 | k127 .5055 | .6131

2169 | .2785 | .3455 | 4198 | .5036

1807 | .2310 | .2850 | 3438 | 4088

JAb75 | L1879 | L2307 | L2766 | .3265

1176 | .1h92 | L1824 | .2175 | .2550

.0908 | .1ikg 1399 | .1660 | .19%5

L0673 | 0849 | .1030 | .1218 | .1hk13

o2 | L0594 | L0781 .08BM6 | .O9TT

L0305 | 0383 | .ok62| 0543 | .0625

LOLTh | .0218 | .0262 | .0307 | .0%52

L0078 | 0098 | .o117| .0137 | .0157

.0020 | .0025 | .0030 | .0035 | .00kO
0 0 0 o} 0

z/ry for Ne/N¢ = 0.5

0.8 1.0 1.2 1.4 1.6
0.4441

.3499 [0.5015

.2796 | 3787 [0.5249

.2229 | .2040 | .3816 | 0.5070

A7 | 2280 | L2879 | L3602 | 0.4565

L1359 | .17hs | L2168 | L2644 | L3199

Jlosh | L1304 | L1603 | .1926 | .2282

.07h2 | L0940 | 1146 | .136h | .1596

L0510 | 0643 | L0780 | .0922 | .1070

L0324 | .oko7 | .0kg2 | .O5T8 | .0667

.0181 | .0227 | .027h | .0321 | .0368

L0080 | .0100 | .0121 | .01kl | .0162

.0020 | .0025 | .0030 | .0035 | .0040
0 0 0 o} 0
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TABLE 2.- COORDINATES FOR UNIFORM PRESSURE SHAPE

z/r, for NB/Nq) =0
B2
0.5 0.8 1.0 1.2 1.k 1.6

r/rb
o] 0.3672 |0.7393 o

.05 | #338k | .6728 {1.8156

.10 | L3097 | L6072 |1.3283

15 | L2815 | 5433 |1.0451

.20 | .2538 | 4820 | .846k

.25 | 2268 | 4236 | 6947

.30 | 2008 | .3687 | .5732

.35 | WA758 | L3175 | L4730

Lo | L1520 | L2701 | .3888

A5 1 1295 | L2267 | 3173 | 0.4906
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(a) Schematic diagram.

(b) Configuration and coordinate system.

Figure l.- Tension shell entry vehicle.
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(a) Variation with shape parameter A%, Ne/N¢ =a = 0.

Figure 2.~ Newtonlan flow shape.

18

1.0




(b) Variation with stress ratio NB/N¢. A% -1,

Figure 2.- Concluded.
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Figure 3.- Variatlon of drag coefficient with shape parameter A2 for various values
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(b) Variation with Ng/Ng. BZ = 0.8.

Figure 4%.- Concluded.
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Figure 5.- Effect of pressure distribution on shape of tension shell.
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